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RECURSIVE FILTERING ALGORITHMS FOR SHIP TRACKING

INTRODUCTION .

Existing naval forces can be deployed and concentrated more effectively with a better
knowledge of current and probable future locations of the surrounding shipping. Making
good use of available surveillance assets in performing this tracking function requires the
correlation of data coming from many sources at unpredictable times. Because of the
large volume of such data, there is interest in creating a capability for automatic ship
tracking using sporadic and noisy observations of position only. This report investigates
the use of certain recursive filtering techniques, in particular ones based on Kalman filters,
for this purpose. This work provides alternatives to existing algorithms for possible use
in automatic ship tracking.

The ship tracking algorithms were designed for these anticipated uses:
Track Generation {Kalman Filter)

@ Estimation of present location

@ Prediction of future locations

@ Generation of “gates” (position confidence regions) for report-to-irack cor-
relation at present time in a multitarget environment.

Track Smoothing (Bayesian Smoother)

® Generation of “gates” for report-to-track correlation at previous times (i.e.,
for out-of-sequence reports) in a multiterget environment

@ Estimation of previous locations (i.e., track history).

As input data, these algorithms require reports specifying time of observation, observed
ship pcsition, and a covariance matrix for the errors in the observed position (or equiva-
lent information in the form of a confidence region, containinent ellipse, etc.). If an ob-
served velucity is also reported at a given observation time, it also must be accompanied
by a corresponding error covariance matrix in order to be utilized. Because of the adapt-
ive nature of the Kalman filter used for track generation, no additional information (such
as estimated heading, speed, or maneuverability) need be specified externally, and a track
can be initiated with a single observation. The time intervals between successive obeerva-
tions may be variable. The input reports are norraally processed recursively in their nat-
ural time sequence and need not be recsalled after their initial use. The incorporation of
an out-of-sequence report, however, requires that the intervening reports be available for
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reprocessing. As output, these algorithms provide (2) estimates of ship position, at present
or future times for the track generator and at past times for the smoother, (b) error co-
variance matrices, or equivalent containment ellipses, that correspond to these estimates.
The track generation algorithm also provides estimates of average velocity (two compo-
nents) and maneuverability (two parameters), which are revised after the receipt of each
observation.

There are two salient features of these particular tracking algorithms. First, they are
based on a continuous-time ship motion model. This feature allows observations that
are unevenly spaced in time to be processed in a statistically consistent manner by the
track generator. It also enables the smoother to consistently interpolate the tracks for
processing out-of-sequence observations. Second, the ship motion is approximated in
this model as the vector sum of a constant average velocity and a two-dimensional
Brownian motion. These two velocity terms are processed cuncurrently but separately
by the track generation algorithm. A standard Kalman filter is used to estimate the average
velocity with the position. Another recursive procedure is used to estimate the intensity
statistics of the Brownian motion from tlie “residuals” of this Kalman filter. These
estimates then are used as “‘driving roise’’ parameters in the Kalman filter to adaptively
modify its subsequent operation. The purpose of this adaptive modification ¢f the basic
Kalman filter algorithm is to make it flexible enough to track a wide variety of ship
motions without prior external specification of the motion type. "

The track generation algcrithm operates recursively in time. Basically it propagates
the track forward between observations by dead reckoning and updates it whenever a
new report is received. The track smoothing algorithm operates recursively in reverse
time using the output of the track generator (position estimate and covariance matrix) as
input. These two algorithms are first developed here for tracking on a planar surface.
Then they are extended to tracking on the surface of a sphere, both in geographical co-
ordinates of latitude and longitude and in three-dimensional rectilinear coordinates. The
algorithms for the planar case are implemented as experimental Fortran programs and
tested on both realistic and idealized ship tracks.

SOME COM™MENTS ON RECURSIVE FILTERING TERMINOLOGY
Let x be a state vector describing a ship’s location such that
x(t) = F()x(t) + w(t), (1)
where F is a matrix time function and w is a Gaussian white noise process with inean
w(t) and (known) normalized covariance matrix Q(¢). This normalization refers to the
limiting value of

% E{[w(t +A) - w(t+d) - w(t) + w(t))w(t+A) - w(t+d) - wit) + E(t)]T}.

The state vector x will contain two position components defining the ship’s location, and
possibly other components, such as velocity, as well. At sporadic times ¢;,i= 0,1, 2, ...,
noisy observations z; of x(t;) are veceived such ihat
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NRL REPORT 7969
Z = Hx(t) + n;, )
where H; is a matrix and {n;} is a sequence of independent random vectors such that
n; is Normal [O, R;]
and is statistically independent of w. The observation times are ordered such that

i> jest; > t; but are otherwise arbitrary. Also, a prior probability distribution is as-
signed to the state vector at the initial observation time such that

x(to) is Normal [fo,Mo] . (3)

For any pair of times ¢t and 7 such that T 2 t > ¢, the conditional probability dis-
tribution of x(t), given the prior distribution and all the observations contained in the
interval [tg, T), happens to be multivariate Normal. The moments determining this dis-
tribution are denoted as follows.

Definitions
(T, t) = E[x(t)] gvenalldatain [to, T]
K(T.¢t) = E{[x(t) = (T, O] [x(t) - n(T, t)lT} givenalldatain (tg, T]
Z(t) = n(t, t) = E(x(t)] given all previous data
P(t) = K(t,t) = E [x(t) - ()] [x(t) - 2()]7 given all previous data

Capital letters denote matrices, and lower case ones vectors; A7 denotes the transpose of
A; E denotes expected vaiue.

The Kalman filter corresponding to Eqgs. (1), (2), and (3) generates statistics re-
cursively from the observations. These statistics are, at any time ¢, an estimate of the
state vector x(t) and an error covariance matrix for this estimate. These statistics have
the property that

x(t) = filter estimate of x(¢)
and

P(t) = filter error covariance matrix for x(t).

Hence, this Kalman filter may be regarded as a real-time conditional probability computer.

Time ¢t may be at or between observation times.

Another recursive algorithm, called the Bayesian smoother for Eqs. (1) through (3),
can be used i conjunction with the Kalman filter algorithm to compute n(7, t) and
K(T, t). The details of both algorithms are shown in Appendix A. 7(T, t) is called the
smoothed estimate of the state vector x(t) at time T, and K(7T, t) is called the error
covariance matrix of %(T, ¢).
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In the limiting care where det [My] — <o for the prior distribution of x (t3) (i.e., a
“flat pricr"), n(T, t) and K(T, t) may be interpreted as the first and second moments,
respectively, of the normalized likelihood function (i.e., integrates to unity) of x (¢t) for
the observation values received and the motion model postulated. This normalized like-
lihood function is also multivariate Normal. No prior distribution for x(¢g) is involved in
this interpretation, which includes the Kalman filter statistics X (¢) and P(t) as special
cases of (T, t) and K(T, t).

UNDERLYING SHIP MOTION MODEL

The tracking algorithms are based on the Kalman filter and Bay=sian smoother for a
specific motion model in which a ship’s motion is approximated as the vector sum of a
constant (average) velocity and a two-dimensional (random) Brownian motion. The in-
tensity of the Brownian motion, which is actually specified by three independent param-
eters, is selected to correspond to the extent of maneuvering performed by the ship with
respect to a constant-speed, great-circle course. This particular motion model was selected
as a basis for these tracking algorithms fcr ‘he following reasons.

@ The general recursive filtering algorithms of Appendix A reduce to particularly
simple forms for this model if the earth’s curvature is neglected. Modifications to account
for tl s curvature are also relatively simple.

® The motion model has sufficient flexibility to give at least a rough approxima-
tion to a wide variety of ship motions.

+ @ The smoothed tracks generated are great circles between smoothed observation
points,

® Unevenly spaced observations can be accommodated in a systematic way.

© Tracks can be initiated with a single observation, so no qualitative distinction
between tracks and unassociated observations is necessary. Track initiation and observation-
to-track association can be regarded as special cases of track-to-track association.

® The linear size of the containment ellipse generated by the corresponding Kalman
filter (i.e., the track propagation algorithm) often grows only as the square root of the
tir-e elapsed since the last observation. Since the gates used in observation-to-track asso-
ciation algorithms often correspond roughly to these containment ellipses, this is possibly
an important element in achieving good observation-to-track association performance with
sparse obeervations at high shipping densities.

The execution of the tracking algorithms based on this model requires that each re-
port of a ship’s location specify the time, the observed position, and the (2 X 2) covariance
matrix of the observation errors. The average velocity and Brownian motion intensity
parameters are esiimated from the observation data and need not be specified extemally.

As output, the algorithms are capable cf providing the following information about a ship
at any given time.
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NRL REPORT 7969
Track Generation Algorithm (Kalman Filter)

® Estimates of current positicn and average velocity (four components
altogether)

® A (4 X 4) covariance matrix for the errors in these estimates

® An estimute of the three Brownian motion intensity parameters describing
the ship’s maneuvering.

Track Smoothing Algorithm
® [Estimates of position at any past time
® A (2X 2) covariance matrix for the errors in these estimates.

The information concerning the ship’s position is the output of primary importance.
Estimates of average velocity and maneuvering are included chiefly for the ulterior pur-
poses of estimating future and past positions.

This motion model is tailored for tracking with position-only observations. It is also
possible to incorporate independent velocity observations into the tracking procedures,
but this is not a completely straightforward extension. The difficulty is basically that a
ship's velocity in this model has two components—an average velocity, which is being
estimated, and a completely random velocity, which is not. What is observed, however,
is the sum of these two components; thus some additional assumption must be specified
about the relation of the observed velocity to the constant-velocity component of the
model. Possible procedures for making such a modification are discussed in Appendix B.

TRACKING OF PLANAR MOTION

It is convenient to begin the detailed development of these tracking algorithms with
the consideration of a special case. In this case a ship’s motion is restricted to a portion
of the earth’s surface which is small enough to be adequately approximated by a plane.
The resulting algorithms are thus easier to understand and can easily be generalized to
algorithms for tracking on a sphere. In fact, this generalization is basically just a matter
of rotating the coordinate axes at each time of intcrest, usually an observation time, to
realign the y axis with local north.

In this planar context, an approximation of the ship’s motion is described by a state
vector consisting of two rectangular position coordinates, x and y, which satisfy the dif-

ferential equation
x wy
== ={---1 (4)
y wy

where
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wy "
[- --1 is a two-dimrnsional Gaussian white noise process with constant mean

u -
-~ =—| (the ship’s average velocity) and constant normalized covariance matrix Q@
v _| (representing maneuvering about this average velocity) such that

dxx ! Qxy
Q=|---1-=-|.
dxy | Qyy
It is assumed that bias has been removed from the position observations so that the obser-
vation at time ¢; can reasonably be approximated as the 2-vector

[zxi } l:x(ti):l [ nxi_J

—— ==+ ]--=1, (5)
2y y(t) nyi

where

nxj
[— - —] is a zero-mean bivariate Normal random variable with covariance matrix R;

ny; such that

|
Txxi 1 Txyi
Ri=|-=--+—---

. .
Txyi | Tyyi

The @ and R; matrices have been kept deliberately in general two-dimensional form. No
significant computational reduction appears to be possible, unless the observation errors
are assumed to be statistically independent in those rotated coordinates which also diag-
onalize the Q matrix. Aithough such an assumption may be reasonable in some situa-
tions, it might constitute a serious inefficiency in the use of the data when the “error
ellipses” of successive position observations are long and narrow and differ widely in
orientation, which is a case of major interest here.

Track Generation—Adaptive Kalman Filter

Although a Kalman filter for Eqgs. (4) and (5) could be constructed directly, it could
not be implemented in practice for position estimation because the average velocity com-
ponents u and v and the Brownian motion intensity matrix @ are not known. They must

6
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be estimated from the observation data as the track is being generated. It is assumed,
however, that the covariance matrix of each observation error is known to the tracker
(i.e., both the observed position and error covariance matrix are necessary parts of the
input data).

If the average velocity components are adjoined to the state vector of the ship mo-
tion model, the motion can be described in terms of the augmented state vector by the
differential equation

T x ] [ ot o0 110 A= 7 [ owe ]
_— —_—— .- -
. ! [
y 0, 0 : 0 1 1 y wy
PRGN |3 [ T I ——— ] -=-=1, (6)
u o, 01!)0 0 u 0
- = ——=t-——y--—-1t--=|{|-=-- -—=
. v J L 0 v 0 v 0 v 0 dL v Jd L 0 J

where wy and wy now denote zero-mean noise components and Q denotes the correspond-
ing 2 X 2 partition of the 4 X 4 driving noise matrix, the other components of which are
zero. Furthermore, the position observations can also be expressed in terms of this aug-
mented state vector as

Zxi 1 ' 0 v 0 ' 0 T nyi )
2y 0o+ 1 4+ 0 1 0 y(t) nyi_J

u

L U

Hence, if Q were known, u and v could be estimated concurrently with x and y by the
use of the Kalman filter corresponding to Egs. (6) and (7). As an ad hoc procedure based
on this concept, this filtering algorithm is used as if Q were a known constant matrix,
except that the value of @ used in these computations is updated at each observation
time by another recursive algorithm. The initial estimates of u, v, and Q are all taken as
zero, which in effect gives priority to estimating the average velocity (u, v) over estimating
the ‘“‘maneuvering matrix” Q.

The Basic Kalman Filter

If Q is treated as a known constant for the moment, the evolution of the conditional
mean and covariance matrix of the state vector between generic observation times t; and
ti+1 can be described by specializing the results of Appendix A to Egs. (6) and (7), giving
the following differential equations:

o w.ﬁ‘w‘
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x =

- .t
LI
C O <N

Pxx = 2Dxu + Qux
I.?xy = Pxv * Pyu t Qxy
Pyy = 2ys + Qyy

Pxu = Puu
Pxv = Puv
I:'yu = Puw
I.Jyu = Pw
Puy = 0
i’uu =0
pw = 0.

In this case, the differential equations can be integrated analytically to give

(tiyq) = () + 7a(t})
Y1) = F(}) + 0it})
a(ti,q) = a()
0(tiv1) = 0(t])
Myy = Pyx(t}) + 200, ()T + Py (4772 + qup?
My, = Pay(t]) + [Pgy(t}) + Py ()17 + Duy(t})72 + quyt

Myy

My

= Pyy(t}) + 2Py, (41)7 + Py (t})72 + qyy7
= Pey(t?) + Pyt

= Pry(t]) + Dyt

= pyu(t?) + py(t)T

= py(t]) + pu(tf)T

= Puu(t])

= puy(t])

= pwlt]),

(8

(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(13)
(19)
(20)
(21)

,
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where 7 = ¢;,; — t;, and the m variables denote the corresponding components of the

P matrix at time {;,;. After the observation

at time ¢;,;, the conditional mean and covariance matrix components are updated ac-
cording to the equations

ED £ a; Pxx : Pxy _ zx(i +1) - &; - 7d;
===l=l=-=-=|+tT1|-=-= ¥ -y --- Riil-l ----------- (22)
ji-l-l yi | b; Dxy : DPyy i+l sy(i +1) - ¥i — 0

.. . | )

Uj+1 uj Pxu | Pyu a (i +1) = X - 74

oot Tl el B et i+l | T T T T T T ! (23)
| 9iv1 Oi Pxv ' Py |. zy(i +1) = 3 - 70;

where the integer subscripts i and i + 1 indicate the value of variables at ¢t} and t},; and
the P matrix components at t},; are computed from the equation

~ Pxx | Pxy | Pxu | Pxu | [ Mgy : Myxy | Nigy : Mmyy | [ Mxx : Myy |
S T, fom e e o 2 b b o 22
{ | | ! | | |
Pxy | Pyy | Pyu | Pyv Mxy 1 Myy | Myu | Myy Mxy | Myy
e e = —— |- = ___‘........l ..... | === - —_———_ = - -
Pxu : Pyu : Puu : Puy Mxy : Myy : myy : myy Myy : Myy
- - e e | --- F-=-
| Pxv | Pyv ! Puv |\ Py _] | Mxy | Myy | Myy | My _| meu I Myy |
i+l
, . -1
My + Ixx{i +1) : Myy + rxy(i +1)
* x ____________________

' 1

Myy | My | Myy | Myy

R L L (24)

¥ ¥
Dizy | Myy | Myy | Myy

Once the initial conditions are specified, Egs. (8) through (24) define the track gen- .

eration procedure under the assumption of known Q. A convenient practice for initiating
this procedure is to start tracking at time t§, immediately after the first observation, with

w3 b s, ot e
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WARREN W. WILLMAN
Z(tg) = 2,

F{tg) = 2y

(25)
ay) = 0
b(tg) = 0
Pxx(t5) = Texp
ny(ta) = Txyo
' (26)

Pyy(t3) = Tyyo
1
Puu(td) = Pu(t}) = 5 V*
all other components of P(ty) = 0,
where V is the (externally specified) average speed of ships covered by the tracking sys-
tem. It is possible to avoid specifying a value of V by using p,,(t5) = P (tg) = *, which
corresponds to the use of a flat prior for the initial state vector to generate its normalized

likelihood function. This modification would make the tracking somewhat less efficient,

however, and is proiably needless since a reliable estimate of V, or at least a finite upper
bound, would usually be available.

Adaptive Modification for Recursive Estimation of Q

To account for unknown Q, note that the term

2g(i +1) - & - 7d;

z2y(i +1) = ¥; ~ 79;

in Eqgs. (22) and (23) can be expressed as

which, if @ were known, would have a zero mesn and covariance matrix

Mxx : Mmxy Tqxx | Tqxy rex(i +1) : rxy(i +1)

SRS PG 'Y EySpi, DR I [,

| .
Myy | Myy Tdxy | Tqdyy rxy(t +1) | ryy(i +1)

——— v —— -
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Furihermore, if Q were known and used in Eqgs. (8) through (24), the vectors

€x(i +1) 2x(i +1) - X; ~ ™;

€y(i +1) zy(i +1) - §; — 19
would be atatistically independent, in which case a reasonable statistic @ (i + 1) for ap-
proximating Q at time ¢],, would be given by the equations

Lt
+
bt

PP _ 1 179 -~ _
Qn(l—l) = i+ 1 et ;l' ‘.e:j - .pxx(tj) rxx;]
J-
] L3 1
. 1 5= -
Ayl =1) = 773 Z... 7 [exieyi = Pxyltj)- "xyj]

L
L)
-

and

L.
+
-t

a g _ 1 112 -y -
ny(' +1)‘ = i+1 4 :l’; [eyj - Pyy(tj) ryyj]'

L
[
iS5

where 7; denotes ¢j — tj-1. These statistics cannot be used directly to estimate @ because
Q is needed to compute the €'s and p’s. However, these statistics obey the following re-
cursion equations:

. 20 4+1) - - P+ 1
Geeli+1) = 4eli) + (,.il)[e"(' Dot raGeD ) (@)

. . 1 [e,(i +tl)e,(i +1) — myy, — ry (i +1) ]
Q.‘r.y(' +1) = qu(') + (i+1) T - Qty(') (28)

and

€2(i+1) - my, — ro (i +1) ]
Gy +1) = 4y + G [ ¢ — 2 - g0, (29)

where 7, mxy, myy and my, are defined as in Egs. (8) through (24). As an ad hoc pro-
cedure, Eqs. (27) through (29) are used recursively to jenerate estimates of the compo-
nents of Q, starting with g« (0) = §xy(0) = Jyy(0) = 0. It is also desirable to constrain
these estimates so thav they form a pogitive semidefinite matrix which is diagonalized by
a rotation to coordinates aligned with the estimated average velocity vector (i.e., maneu-
vering is assumed symmetric about the ship’s average heading). One way which has been
found to accomplish this is to use the following as estimates for the time interval (¢;, t;+1)
iu the context of Eqgs. .8) through (24):
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~1l-g+'z‘2°-6‘zk (30)
Rl Y
. U SN (31)
o a? + of '
=2 _ o2
1 ot DR | :
Gy = 3 {§ - Al 8
w =2 [ a? + oF :] | (32)
where |
€ = max {0, [§ux (i) + Gy ()]} (32
V r 5.2 + ".2
‘ - -~ I3
¢t —"—*—"‘ﬁiﬁ'_ dey@) > §
=93¢ a0, dxy (D) 3 (34)
i“ 5"2 -~ . .
aa dxy (i) otherwise.
- Y

The justification for this procedure is given in Appendix C.
Final Algorithm

This completes the srecification of the recursive track generation procedure. To sum-
marize this procedure, tiacking begins immediately afier the initial observation at time ¢, with
initial conditions given by Egs. (5), (25), (28), and qxx{(0) = Gxy(0) = @yy(0) = 0. From
time ¢ to time ¢},;,i= 0, 1, ..., the track is generated as follows:

Track Propagation

® Generate ¢xx, ¢xy, qyy from Gxx(i), Gxy(i), @yy(i) with Eqgs. (30) through (34).

® Use these values in Eqs. (8} through (21) to generate X(t;,1), ¥(ti41)
G(tis1)s 0{t;41), and the m’s.

Track Updating

@ Use these values of the m's in Eqs. (22) through (24) to generate the new
estimates &;,,, $;41, 841, D41 from the observations z, (i +1), 2, (i +1).

12
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® Use Eqgs. (27) through (29) to compute gyx(i + 1), @xy(i +1), @yy(i +1),
whare (as defined eatlier)

-

€(i+l) = 2,(i+1) - x; - ™4;
€y(i v1) = 2,(i +1) = §; - 70;.

Note that track initiation is accomplished with only one position observation in this
algorithm. Hence an unassociated observation can be regarded as a one-point track. In
this regard, it is perhaps helpful to consider a track as consisting of the time history of
the conditional mean and covariance matrix of the entire state vector, not just the time
history of £ and y. With this inierpretation, no qualitative distinction between report-to-
track association and track-to-track association is necessary. The implementation of this
algorithm requires that a total of 17 quantities be carried, propagated, and updated for
each ship being tracked (i.e., the estimates X, ¥, 4, &, the 10 independent “p’ compo-
nents of the corresponding covariance matrix, and the maneuvering parameter estimates
éxx? éxyv and éyy)-

In actual operation, it might be well to reinitiaiize this tracking algorithm, perhaps
at the discretion of a human operator, if a sequence of consistently large residuals €, and
€y are encountered for a given ship; such an event would imply an abrupt changs in ma-
neuvering behavior. Another possibility would be to limit the i + 1 factor in Egs. (27)
through (29) to some maximum to prevent the estimates of @ from depending too
heavily on old observations.

Prediction of Future Positions

Although the preceding algorithm is contemplated mainly for the updating of posi-
tion estimates after the receipt of an additional observation (one-point updating), it can
also be used for computing the conditional probability distribution, given all currently
available observation data, of a ship’s position and velocity at a future time. If ¢; is the
time of the last obeervation, this can be done with the track propagation steps of the
above algorithm by regarding the future time in question as t;,;. The conditional dis-
tribution is then Normal with mean (predicted position and velocity)

and covariance matrix M, as defined by Eqgs. (12) through (21). Aside from its obvious
tactical value, this information can also be used for the construction of position and/or
velocity gates in observation-to-track correlation; in the latter use, ¢;,, is the time of the
observation possibly being correlated. In either case, however, unless a new observation
is actually used to update the track, the ‘“track updating” steps are not performed and

13
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any svasequent track ™pagation or updating proceeds frem time t; as if these computa-
tions had never takei place.

Track Smoothing

In addition to keeping track of the conditional distribution of a ship’s current posi-
ticn and velocity, it is occasionally useful to krow the current distribution of its state
vector at a previous time as well (i.e., the smoothed track statistics n and K). The main
use foreseen for this information is in observation-to-track association for out-of-sequence
observations. A smoothed track can be considerably more precise in practice than the
past history of the track generated by the corresponding Kalman filter. This extra preci-
sion would enable out-of-sequence observations to be correlated to tracks more accurately
in areas of high shipping density.

This track smoothing algorithm is the specialization of the generic Bayesian smoother
of Appendix A to the particular ship motion model adopted above. As a simplifying ap-
proximation, however, it is assumed that the current estimates of the velocity and ma-
neuvering parameters u, v, gxx, qxy, and gyy at the time of smoothing are the exact values
of these quantities—with one exception. The estimates §,y, dxy, and {yy are first adjusted
according to Egs. (30) through (34) to insure that the resulting “mancuvering’ matrix, de-
noted by Q, i positive semidefinite. Then Q is further modified to compensate for the
uncertainty in the velocity estimate, which is suppressed by the assumption that 4 and &
are precisely known constants. It has been found by numerical experimentation that this
modification can be achieved reasonably well by replacing @ with a matrix Q such that

(35)

Ruy(T) | Pwm:l
Pu(T) | Py(T)

Q=§+(T‘to)l: ““““““

where T is the time of smoothing and ¢, is the time of track initiation. This simpiification
makes it possible to use the Bayesian smoother corresponding to Eqs. (4) and (5), rather
than to Eqs. (6) and (7), a reduction from four state variables to two. To implement
this smoother at time T requires that the quantities £(t;'), 5 (t]), Pxx(t}), Pxy(t]), and
Pyy(t]) be available for all observations times ¢; such that ¢; < 7.

For clarity of notation, the components of 3(T, t) are denoted here by

y(t)

and those of K (T, t) by

14
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kax() | Ray(0)
key(B) 1 keyy(t)

The variables n and K are continuous in t and obey the following differertial equations
between generic observation times ¢; and ¢;,; (T is considered a fixed parameter here):

u 2
---|+Q@P1in - -T= (36)
v y

K = @plK + KP'Q - Q. (37)

( an_w_n)
R Y’

where
(X(t) = £(]) + (t-t)u

F@) = 3@ + -ty

Pex(t)) | Pry(t]) )
P@t) =|----- === [+ (- 1)@
L pxy(t:) { pyy(ti )

is the Kalman filter solution corresponding to Eq. (4). Equations (36) and (37) can be
integrated analytically in this case by noting that the quantities

£
P'l 7-|---
y
and
P YK -p)p?

are constant on the interval (¢;,;,1). Therefore, by continuity, n(t) and K(t) can be
computed for any te(t;, t;,,) in terms of their values 1;,; and K;,4 at time ¢;,,; as
follows:

® ILet

Misq = P(t;yy) = P(t]) + Q(tjs1 - t), (38)
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@ Compute

K(T,t) = P(t) + PO)M;}1(Kj41 — Mi 1) M1 P@2) .

Thus, it is easy to compute n and K recursively, starting with

WARREN W. WILLMAN

;iﬁ'l = f(t‘?’l) = f(t:) + u(t"+1 -ti)’

3’&1 = Y(tiv1) = i(t‘-*) tutivr— ).

-

2T, T) =

Py
x

n(T,t) = |_-

®

ol P(OOM; 1| mie1 -
y(t)

(T

---1 and K(T,T) = P(T)

y(T)

Xis1

Yi+l

(39)

(40)

(41)

(42)

and using Eqgs. (38) through A(42) on the interobservation intervals in reverse sequence.
Note that setting t = ¢; in Eqs. (40) and (41) gives 7; and K;. Equations (38) through
(42) can be computed component by component by first defining

and

then computing

T =ty ~

s=1t-t,
Py = peg(t]) + a8,
P2 = Pay(t) + 4yys,
P3 = Dyy(if) + qyy8,
My = Pex(t]) + Quut,
my = Pey(tf) + Qxy7,

m3 = pyy(t;") + nyfr

16
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X;,; from Eq. (39),
and
'iii»l from Eq. (40),
and then computing
_ R pymgz— pamo ~ bgmy — pymo ~
() =2(t) + ———— @Eis1 = Xje)) + — 3 Fis1-¥ie1) (43)
mymgz — mgy mymg — mgy
< . pamg ~ pgmy _ ~ pgmy = pamy _ ~
y() = y() + — % (Xjeg —Xi41) *+ —_—% Gis1 ~Yis1), (44)
mymg = mg mymg = mg

kyx(t) = Dyux(t) + {kxx(ti+1)[p1m3 —p2m2]2 + 2kxy(ti+l)[P2ml = pyimy]

2
1
X [pymg = pamg] + kyy(tisq)pom; - P1m212} {————2} , (45)
mymg — my

kxy(t) = ny(t) + {kee(t41)lProng - pama]lpamg = pgmy} + k;y(ti+1)

X [(pgmy — pyimgi(pgmy — pgrrg) + (pymg - pymg}(pgmy — pamy)]

2
N 1
+kyy(ti+1){p2m1 = Pimg, ‘paml - p2m2]} {"_‘——E} ’ (46)
Mmyma — m2

and

kex(t) = pyy(t) + {kxx(t,-n)lpzms = p3mal® + 2kyy(tis1)[Pamy ~ Pamy)

2
1
X [pamg — pgmg] + kyy(t;e1)lpgm; - szzlz} {_'—7} . (47
mymg — mg

Note that Eqgs. (43), (44), and the corresponding Kalman filter equations for £ and y
imply that the smoocthed tracks (X, ¥) for this type of motinn model have constant veloc-
ities between observation times. The tracks are continuous, but there are, in general, dis-
continuities in the velocities at the observation times.

Numerical Performance

These planar tracking algorithms have been implemented as experimental Foriran
programs. These implementations have been tested on both idealized and realistic ship tracks.
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WARREN W. WILLMAN

Figure 1 shows the performance of these algorithms on a realistic ship track con-
sisting of 17 cucervations. Covariance matrix information here is depicted in terms of a
corresponding “two-sigma ellipse,” a level curve of the (Bivariate Normal) probability
density function which contains 86% of the probability mass of the random variable in
question.

Figure 2 shows the comparative sizes of the Kalman filter’s and Bavesian smoother’s :
86% containment ellipses for some ~epzesentative previous positions for uvnis same ship
track. The smaller size of the smoother’s containment ellipses is significant in the
observation-fo-track association problem for out-of-éequence observaiions, as explained
earlier.

hoal b b

ettt | B

Figure 3 is a listing of the Fortrun program that generated the results in Figs. 1 and
2. Execution time on a CDC 3800 computer was 2 s for this example. This is just an
experimental program, but it gives a rough in ication of what is involved in the imple-
mentation of these tracking algorithms.

Figure 4 shows the tracking algorithms’ performance on an idealized track. In this :
case the true track is displayed to show the tracking accuracy. !

— — — — S,
a— —

Ll

S~
— 86% POSITION CONTAIN- ™\
- P MENT ELLIPSE FOR LAST \
/ OBSERVATION-ELLIPSES
FOR OTHER OBSERVATIONS /
NOT SHOWN, BUT P

SOMEWHAT — . .
SIMILAR.  __ — FILTER'S (AND SMOOTHER'S)
— 66% CONTAINMENT ELLIPSE
FOR GURRENT POSITION AT
LAST OBSERVATION TIME-
OTHER POSITION ELLIPSES
NOT SHOWN.

el i e 555 N il Cllge- o e

P

b . M

atlandih s

-

1AL
OBSERVATION
AND POSITION
ESTIMATE

R T

3 DATA : ~%—3¢~% SEQUENGE OF OBSERVED

, ‘ POSITIONS

KALMAN @ — -@ SEQUENCE OF CURRENT
FILTER: POSITION ESTIMATES AT

3 (1 POINT UPDATING) OBSERVATION TIMES

3 BAYESIAN SMOOTHED TRACK AT

) SMOOTHER: LAST OBSERVATION TIME

5 Fig. 1 —Performance of recursive tracking algorithms on realistic ship track (true track not shown)
t
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e ®

4
- 10
10 HOURS BEFORE
CURRENT TIME
- 8 ’ C
4 § : Fl L # _|( e x
-io -5 5 N
/
P
4 e KALMAN FILTER'S 86%
- ks POSITICN CONTAINMENT
7 ELLIPSES AT PREVIOUS TIMES.
/
‘\ . L~ 49 HOURS BEFORE BAYESIAN SMOOTHER'S 86%
- GCURRENT TIME CONTAINMENT ELLIPSES AT
L .10 CURRENT TIME FOR
PREVIOUS POSITIONS.

! Fig. 2—Containment ellipets at last observation time for previous positions on realistic ship track

TRACKING ON A SPHERE: GEOGRAPHICAL COORDINATES

The ship tracking algorithms developed in the preceding section can be extended to
include the effects of earth curvature if it is assumed that this curvature is negligible
within a ship’s position sigma ellipse generated by the filter or the smoother. In this
case, the ship’s motion can continually be approximated by Egs. (4) and (5) in local
rectangular coordinates. Although it has been found convenient for some other tracking
;' algorithms of this type to keep these local z, y coordinates aligned with the estimated
velocity vector for reasons of symmetry, it seems simpler here to keep them aligned with
local north because the motion and observation models are fully two-dimensional anyway.
E This section contains an extension of the planar filtering and smoothing algorithms to

, tracking on a sphere when a ship’s location is described in geographical latitude and longi-

tude conrdinates. Alternate algorit!t us are developed in the following section for tracking
on a sphere in rectilinear coordinates, which have certain computational advantages.

Track Generation

this procedure are as follows.

19

The basic procedure using the recursive filter is to perform the track propagation step
with dead reckoning along a great-circle path using the estimated average veiocity. Track
updating is accomplished by first establishing a rectangular coordinate system centered at
the current propagated position and aligned with local north, then updating as in the sec-
tion “Tracking of Planar Motion,” and finally computing the latitude and longitude of the
updated position. Between successive observations, say at times ¢; and ¢;,;, the details of
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WARREN W. WILLMAN
PRUGRAM MALL

KALMAL FILTER WITH ADAPTIVE CKIVING KCISE

S THENSTON T(990)oXX(999);YY(99G)oX&(QO?)-Y5(999);Pxxt999)0AX£999)
DIMENSION AY(qoq).PxYleog)oPYY(gGO)»ARAX(UQU)oARxYlG99)aARYY(999)
DINENSION SIFAJL999) 350 1i:1295) s THIF9Y9)

READ PARAMETER VALULS

M = MULRER OF DETECTIONS (= NOs OF DATA CARDS!)
VELVAR = PRIUIR SPEED VARIANCE

READ 5071sheVELVAR
§. 71 FCRHATII3sFlve5)

READ (&Nl STGRE) DATA FOR EACH DETECTICHK

T = TIHE

AXSAY = ORSFRVED LOCATION. CCURDINATES

SHA = SEUILAJOR AXIS GF 86 FERCELT CCLTALINERT ELLIPSE
FOR OBSERVATION

Sl w SERTFINOR AXIS OF CoRTALWMENT ELLIPSE

THT = GRIENMTATION OF SENTHAJIR AXIS (CEGREES CLOCKwWISE
FRCH Y-AXI1S)

s5u7n FCRMATIAFL. 0&)
NO 9 I=1ed
READ BGTUT(I)sAXCTI) 9 AVIT) 0 i eIl THT
THT=THT/5743
ARXX(])=((SHA*&IN(THT))*“2+(5AI*CU$(THTIlﬁ*z)ib.
ARAY (1) =SINITHT ) RCUS I THT ) ¥ Lonh 2 uliA= i1 430 ) /4.
0 ACYYLI ol (oMo Tl ) e +l50ACGolTNTIIRE21 ke

SHITIALIZATION

XX(1)=AX(1)
YY(1)=zAY())
PXXl1)=ARAX(])
PAY(1)=A3XY (1)
PYY(1)=A2YY(1)
Cl=FAX(1)+PYYL(])
(2:50RT((PXX(1)-PYY(1))**244.*PXY(1)*&2)
Cl=e5u(C1+C2)
Cc2=€1-C2
5AJ(1)=22%30RTICT)
SUINI1)=24#5CRT(C2}
TH(1)=57.3&ATAH((PXX(I)—CI)/PXY(I))+9u,
UXAzue

GXY=Oo

QYY=Ue

UsQ,

Veu,

PAL%G o

PXVaUe

PYuzue

PYV=U.
PUU= 5% VELVAK -
pUV‘U.

Fig. 3—Frogram listing
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FVVsPUU uced from
(Xasue t:‘:{ oadva'ﬂlb\. copY
CAY¥=Je
CYY=Ua

RICURSIVe STAIL VECTOR ESTIMATION

LS Y1 I=24i

wX=AXL])

“Y=AYL])

RXX=ARXX(T)

2XY=ARXY(])

RYY=ARYY(])

TAW=T(])=T{I~1)

XRAR=XXN(1=-1)+URTAL

YRAR=YY{ [=1)+V+#TAU

AAX=PXAL [+1 )42 o #PXURTAUSPUUR TAUR TAJ+QOXXET AU
GXY=PXY { [=1 )+ (PXVAP (U) % TAu+PLVETAURTAUSJRY ETAL

GYYzPYY{ =1 )42 4 #PYVETAU+PVVETALETALHCYY®TAU
GXUzPXL+PUUXTAY

AXV=BXVepUVETAG

GYwsPYUspuVxTAau

GYVzPpYV4pVVRTAL

NET= IGXX$RXX )% AGYYSRYY )~ { OXY 4 AY ) 252
HXX=(GYY4+RYY)/DET

HAY=z=(GXY+RXY)/DET

HY Y= {GAXSRXX) /0T

OXXLT ) 2OXXGXRX GRXBIINA=D ¢ ¥OIXHGAY AHAY =OGXYEGX Y HHYY
PAY LT ) =OXYmGXARGXY R AR~ (GAXBG T Y4 GATHGAY S HAY =G Y GY Y HYY
OYYL ) eGYY=GYYEGY YpY V2 o 5 OYY “GAVEAAY =XV HGXY #HXN
Cl=PXX{.)+0YYL(I])
C2=SQRTI(PXX(TI=PYY ([ 1082444 PXN () 3i2)
Ci=e5%(C14+C2)

C2=C1~-C2

AT V=24 ¥SORTICT)

SUINEI ) =2,%5QRT(CR)

THUI)I =87 25 ATAMUIPAXI L) =C 11 /PAY [ ) 1490,
PAURGAU=GARRGAITHAASLGA? HOTURCAT w il ) HHAY~CAYRG T URHY Y
PAVaCXV=GAR Y GAVEHAA= T GANECYVSOAYIGAV ) ITHAY=GXY v GYVHYY
OYuzCYUmGY Y HGYURHY Y = ( CY YR CALFOGAYTAYU Y w HAY = GX Y ¥ GAUSHAA
PYVaGYV=GYYSRYVERY Y= (GYYHOAVEAXTYHGYV ) FHAY =GX Y« GAVEHAA
PUJPUL=GYURGRUSNAA =2 o 4 GAG TGTUTHAY =GY U GYURHY Y

PUV sPUVaGXURGRVEHNX =LA SO VEGY RO J R RAY-GYURGYVRHYY
PVVaPVV=GXVEGA #HAN®2 o "G Al vGY LV FHAY ~GYVRGYVENY Y
PETERXA#RYY=RAY#RXY

HAXA=RYY/DET

HXY ==RXY/DFT

HYY=RXX/DET

AXLT I =a09 ARG IPRXU ) 2 1na+P A L) R AT ) F e n=ABAK)
XXCP)=aAX{IY+IPAAM T ) #SHAYSPAY L[ )Ry ) (e Y=Y AR)
YY{T)=YRAR+(PXY ( [y v qaa+D3 Y (L) #HX ) 8l X=Kny R Y

YY U ) =YY (D) PXY () RPAYHFYY () #HYY )R (LY-YEAR)

UsUgp (PAVHHXXGPYURHAY ) ZA=28A ) 4 (PARHAY 4P TURHYY I # (LY =YBAR)
VaV 3 iPAVEHAXSDYVERAY )2 LZAAEAL )4 {OAVEHAY 4O YVRHYY ) #(LZY-Y5AR)

UPGATE CRIVIGH Hiulde ZoTLifaATL

KI=FLUATI(])
CAaAaCAX4 L LLEX=AHAR ) # 8 2=GAX=RAA)/TAL=CAAN/R]

Fig. 8—Program listing (continued)
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CXY2CXY# L ({Z=KARAR) ¥ { o V=YBAN) =GXY=RAY )/ TAU~CXY ) /RI
CYYCYYalLIZY=YRAL) 48 =GYY=RYY)/TAU-CYY)/R]
RK=CXYR (URUSV#V)/G/V

DX 2CXX

CYYsCYY

1F(DXXeLTota) DXXzu,

!F‘DYY.LT-&-O ) DYY:\J.

IF(RKeGT oDXX+DYY) RK= XX+DYY

TFIRKeLT ¢=RXX=NIYY} RK==NAX=~DYY

OXXzo5# IPXX+DYYHRK# LUitsmVEV )/ (UBUSVEV) )
QUXY=RRK&U#V/ (UsUeVeV) '

OJTPUT

1 = OASERVATION Il‘u :.)\

T = TIVE

(XX» YY) s CURRFNT POSITICH ESTIMATE IN X-Y COORDINATES

SMAJ = SEMIMAJUR AXIS OF 86 PERCENT CUNTAINMENT ELLIFSE FOR
CURRENT POSITION

SMIN = SEMININOR AALS UF CUNTAINMERT ELLIPSE

TH = ORIENTATION OF SEALi AJOR AXLS {D26e CLUCKLISE FROM Y-AALS)

00 3 I=1sN

PRINT 7oi(I)saX(Iy oYY (I)ooMAJT)oSHINIT) 9 THIT)
FORMAT (20X »3F1-e295X237 10 e2/)

PRINT 8

FORMAT(20X/7/)

TRACK SM.UThER

XS{N)=XXIN)

YSIN)=YY(N)

hitl=N=-1

DER=TU)=TLL)

AXX=QXX+PULRDEL,

CXY=gXY+PLViDEN

UYY=LYY+P\VRUL

D‘J /2 k 1'[\-:1

I=N=K

TAL=T(1+1)=T(])

P1=PXX{]) '

P2=PXY(1})

P3=PYY(])
NENElFL+OXARTAUIR PR3+ YYHTAL) =/ 240nYETAG)$%2
AXXzPIH{P3eQYYHTAU) =P 24 (P2+UAYRTAL?

HAYsP2¥ {PL1+ORYHTAU) =L 1 F2+URY&TAU)

HYA=P23d (P3+QYYRTAL) =F i (P2+CAYET,U)

HYYzP3# (P1e+QXX2TAL )= 24 {P2+0AYETAY)
‘o‘l)lhk‘l)%(Hkx*‘Agtl+1)—AA!I)—y"TAU)quY*‘\D‘l+1)-(¥‘.’-\*r“9,ll
ibEn

Ysl“:YY( J Y X (A5 [ 4] A X {1 ) #tTAU) +HIVY R AYSLI+1) =YY (] )=-V#TAL))/
1DE i

SXaz=PXall)

EXY=PAYVIN)

SYVPYY ()

C1=23XA+5YY

C2mOGRVLUAX =i YY) 4/ ot 0AYEED)

. Cl=eS¥(C14C2)

Fig. 8—Program Ysting (continued)
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C2=C1-C2

SHAJIN) =2 #5LRTICL)
SLININ)22#SCRTIC2) ‘
TH(“)=37.3*ATAM((SXX-CI)/:XYifO
DO 5 L=2sN

Isiv=lL+1

TAUST(I+1)=T(])

PLlEFXA(1)

P2=PXY(])

~x=P3=PYYII)

Al=Pl+QAX*TAU
A2=P2+LAY¥TAU
A3=P3+CYYRTAU
DET=AL¥AS=RZRA2
H1=A3/CLT
H2==A2/1:ET
H3=A1/DET
Bl=Pl#i]lepP2¥H2
B2=P1¥h2+F2%H3
B3=P2%li1+P3%H2
B4=P2¥nP+F 3%HS
D1=SXX=A1
D2=SAY=42
D3=3YY=A3
El=Bl®*Dl+bB2%L2
E2=01802+b2%uw3
E3=E3%D]1+b4s1:2
F4=B3%#D2+H4*D3
SXX=2Pl+C1#8 1472 %R
SXYsP2+E1#R3+E2 R4
OSYT=P3+T3%¥u3+ELwHL
Cl=SXX+5YY
Co= O’)xl (LXK YY) 24244 o7 SAYTRD)
Cl=e5%{C1+C2)
C2=C1=-2
SithJt1)=24%SURT(C1)
1Nt =22 4 #SURTIC2)
& THUI)=3 a2 #ATAILSAN=CL1)/uAYV)v3oe

QuUTPULT

1 = GRSERVATION IhLLX
T = TLik
(Xoe ¥YS) = SMOUTHED PUSITICH Ia A~Y CUURDINATESY
SHAJ = SENTHAJOR AXDS CF 86 PECIvT COMTAINMERT ELLIPSE FUR
SIHOOTHED POSITION
u. lH = SEMTAINOR AXIS vF Cui AL -IEI-T FLLIFSE
= ORIEMTATION OF LEN] AJLR ARLS (DEGe CLUCAHISE FRON Y=AXIS)

DO & I=1.4i!
H PRINT 7oT{1)exd(1yoYotT)eotdliYed: H‘(l)yTH(l)
FND

Fig. 3—Program listing (continued)
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FILTERS 86%
CONTAINMENT
ELLIPSES FOR
CURRENT POSITION
AT OBSERVATION
TIMES SHOWN -~
ELLIPSES FOR
OTHER TIMES

NOT DISPLAYED.

SHIP TRAVELS (172
TIMES AROUND THE

15 SQUARE AT CONSTANT
SPEED.

INITIAL OBSERVATION AND
POSITION ESTIMATE.

—~—IC- POSITION OBSERVATIONS
(EQUALLY SPACED IN TIME)

TRUE TRACK

SIZE OF 86% POSITION
CONTAINMENT ELLIPSES (CIRCLES)
FOR ALL OBSERVATIONS —ACTUAL
OBSERVATION ERROR VALUES WERE
ALL ZERO.

*—-—-9
7 8

SEQUENCE OF CURRENT
POSITION ESTIMATES AT
OBSERVATION TIMES — NUMBERED
IN QRDER (KALMAN FULTER)

SMOOTHED TRACK NOT SHOWN.

Fig. 4—Performance of recursive ship tracking algorithmns on idealized track
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® Beginning at time ¢] with the y axis oriented toward local north and the x axis
' toward local east, let ¢; and ; be the latitude and longitude of the estimated position at
that time. In these local rectangular coordinates, the velocity estimates 4;, ;, the (4X 4)
state covariance matrix P;, and the maneuvering matrix estimate Q; are also available. For

convenience here, denoie south latitudes and west longitudes as negative.

® Propagating the ship’s position by dead reckoning to that at the time ¢;,, of the
next observation, adopt a new coordinate system with origin at that position (¢;41, ¥;+1)
with y’ and x’ aligned along local north and east. These parameters are specified by the

equations

Take 6¢[0, 2II)

® Compute

-

~ u-
$isq = sin”! [sindz,- cosy + = cos ¢; sin 7]

f

e o7
Pi+1€ ["Q. §]
. z‘i,-sin'y
sind = —=—
fc°5¢x+1
b . .
Co8 ¢; cosy — 7 sin ¢; sin
cogd = i .
008@-,,.1
Viep = ¥; + 8

if Yieg > 7, Vie1 = Vier — 2.

- D; cos ¢; cosy — fsin ¢; gin y

Uier =

fcosd;,y

25

(48)

(49)
(50)

(61)

(52)

(63)
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WARREN W. WILLMAN

CO8 ¢,‘

€08 ;41

-~

Ujvp = Y;

These are the values of ¥, 4 at time ¢, in local rectangular coordinates.
® Define the rotation matrix 6;,; as

A a L S P d
1 | ViVis1 ¥ Uilhie1 1 80541 ~ Uity

S Sl I tl S S
| Villier — BiVie1 | Viliey + Uil
i
!' ~ -t r -
: o | g Uie1 | “Hje1
rf o
SITLTTTIT | ST TS
et 4 : Yi Uisy : Ui+l
| RIS
, | ® Compute L—!,-ﬂ from covariance propagation equation for rectangular coordinates,
1 : Eqs. (30) through (34) and (12) through (21) for this motion model.
! f
: : ® Rotate to updated coordinates:
%
3 . &t
. éhl = ei+1éi8i1~;~1 -~ a
i values of Q, £, 5
X1 =0 at time ¢;,; in local
2 coordinates

3 yl'-l'l =0.

26

i G ke B

«
a7 d Bl

& ot




NRL REPORT 7969

® Compute with Egs. (22) through (24) and (27) through (34)
fi +1 )
Yis1

Yie1 estimated values at time ¢/, in
local rectangular coordinates

Visl

Fe1

Qi +1°)
® (Compute latitude and longitude of (updated) position estimate at time t,-’u:‘

~ 5’1'-0-1
$i+1 = %is1 * R

-

| Xi+1 ~
Visg = $i+1 + R, COS @41 -

— End of Procedure —

Track Smoothing

If the preceding track generation procedure has been followed through the Nth ob-
servation time, there are N + 1 obeervation times ¢;, i = 0, ..., N, with corresponding
Kalman filter estimates of latitude and longitude ¢; and {;. The Bayesian smoother can
be implemented in this context by computing “smoothed” offiets d; to these position
estimates, and their corrésponding error covariance matrices K;. These offsets are 2-vectors
in linear distance units aligned with local north (i.e., the unit vector €y; points north at
®;» ¥;). These offset and cov:: *wuce matrices can be computed recursively as follows.

® Denote the current (at time £3) positive semidefinite estimate of @ by Qy and
the estimate of the velocity vector
u
v

by ity. These variables are all expressed in the local rectangular coordinate frame of observa-
tion time ¢,

27
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WARREN W. WILLMAN
® Setdy =0,Ky =Py
® Loop through the following steps fori=N-1,N-2,...,0.

1. Rotate the offset vector d;,; and its error covariance matrix K;,; to the local
coordinate frame at ¢;, Y; by computing

a; = 8%1d;4y
and

L = 651K;i410i41

a; s the rotated offset vector
L; is the rotated (2X 2) covariance matrix
0i+1  is the rotation matrix defined in the previous subsection for the Kalman
filter (which could also be obtained from ¢;, ¥;, ¢;4+1, ¥;+; to within the
degree of approximation adopted here).

2. Rotate the velocity vector u;,; to the ith local coordinate frame by computing

T
R SUTSE

Compute ¢;,; and {;,; from ¢; and ¥; with Egs. (48) through (53), except that &; and
i; are replaced by the components of u;.

3. Let

R, cos ¢;o1(Win1~ Vie1)

R¢($i+1 - ¢i+1)

4. Compute

T
Mjyy = B + Qi7;, where Q;=0;4;Q;410;s; and 7 ={;4 - ;.

5. Compute

£
I

=-1
= BM;.1(@; - by)

2
il

B, + PM;} (L~ M\ )M, P,
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which are the offset and the smoother's corresponding error covariance matrix for the ship
position at the ith observation time, expressed in the ith local coordinate frame. The
component-by-component details of this computation are not shown here, but are analo-
gous to Eqgs. (43) through (47).
— End of Loop —

If desired, the latitude and longitude ¢; and ; of the smoothed position estimate at

" time ¢; can be computed as follows.

5 = b & ——oi

% = 9 R, cos ¢;
d:

¥i = Vi +‘§';'

TRACKING ON A SPHERE: RECTILINEAR COORDINATES

Ship tracking on a sphere is sometimes performed in terms of three-dimensional
coordinates instead of geographical latitude and longitude. The use of such a coordinate
system enables the computational effort to be reduced considerably, largely by the avoid-
ance of trigonometric computations, at the expense of a slight increase in storage require-
ments. This section develops an adaptation of the above track generation and smoothing
algorithms for a spherical earth in these rectilinear coordinates. This particular adapta-
tion circumvents the potential problem of singular covariance matrices.

In this system a target’s position on the earth’s surface is described by a vector

-
I
N e R

whose components are the coordinates of the target’s position in an earti-centered rec-
tangular coordinate system. Specifically, the x axis is taken as interseccing the equator
at zero longitude, the y axis as intersecting it at 90°E and the z axis as aligned along the

North Pole (a right-handed coordinate system). Boldface lower case letters are used here
to denote such 3-vectors.

Motion along a great-circle path is represented by a vector normal to the plane of the
great circle, The magnitude of this vector is the angular speed of the motion and its sense is
such that eastward motion along the equator is represented by a vector aligned with the North
Pole. Hence, the motion of a target at position r and velocity r is represented by a vector

€
"
< W™ R

such that r = wXr.
29
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WARREN W. WILLMAN

The track of a target is generated recursively from a sequence of noisy observations
2;,i=0,1 ..., of the target’s paosition r(¢;) in the rectilinear coordinate system. Also
given with each observation z; is a symmetric 2X 2 covariance matrix R; for the compo-
nents of the observation error vector z; - r(¢;) in the directions of local east and local
north. These components of z; could easily be computed by the usual spherical coordi-
nate formulas from a position report of geocentric latitude and longitude.

WARNING: Because of the earth’s oblateness, the geocentric latitude differs from
the more commonly used geodetic latitude (based on the orientation of the local horizon)
by about 10 mi at middle latitudes.

Track Generation

For a particular target, the above-mentioned track generation algorithm can be im-
plemented in this rectilinear coordinate system by computing and storing estimates of r
and w, a 4 X 4 symmetric covariance matrix P for the errors in this estimate, and an esti-
mate of a 2X 2 symmetric driving noise matrix @ after the receipt of each successive ob-
servation. The components of the P and Q matrices refer to the local east and local north
components of the errors in position and velocity and the driving noise. For a {ime t be-
tween obeervation times, the target’s position is estimated by dead reckoning (along a great
circle path) from its estimated position and velocity at the time t; of the last observation.
Hence, using the circumflex to denote estimated values,

@(t;) X [(t;)
- tHlo

©

#t) = Mty cos [(t - tp)l ()] + sin [(t - )l @(t]

w(t) = @ity)
If desired, the value of the P matrix can be computed for such an intermediate time as it
is in the section ‘““Tracking of Planar Motion.” The x subscripts there correspond to local
east components here, and the y subscripts correspond to local north components.
The item of major importance is the manner in which the estimates of r, w, and @,
and the covariance matrix P are updated iromediately after each observation. We initiate
this process immediately after the initial observation z; by setting

o = 29 (3 vector)

wy =0 (3 vector)
Q =0 (2X 2 matrix)
. -
Ry ¢ 0
|
e et
Py = 1 o? : 0 | (4X 4 matrix)
0 :‘-—-'T--z—
, 0 1 o
] | -
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where Fo denotes f(ty), etc., and 02 is an externally specified prior (linear) velocity com-
ponent variance. The general updating step begins immediately after observation time ¢;
with the estimates F;, ©;, Q;, and the covariance matrix F;. The components of the mat-
rices F; and Q; are denoted for convenience as follows:

[~ | { i =
Pee | Pen 1| Peé | Peri
RO et Rt P ‘
~! Pun : Pngé : Pni ‘Gee | en
S R B et Rt P B
Symmetric ~\ Péé | Péi ‘1| 9nn
~ o] )
~ po.
- '\\M—a

where e and n stand for local east and north, respectively. When the next observation
(Zi41, Rj4q) 18 receiveq at time t;,,, the following procedure can be used to compute
the updated quantities ¥;,y, @; 41, Q;41, and P;,q.

1. Compute the quantity

o = V& + 57 .

It is then possible to express the components of the local east unit vector e and the local
north unit vector n (at location ;) as

~%2;
- a;iR,
~¥la; ———=
-=-- 5%
8; = x,-/a,- and n; = (‘d;‘}?;") ’
° (%)
L R, .

It is not necessary to compute these unit vector components separately, but they are used
in deriving some of the following steps.

2. Compute the local east and local north components, 4; and §;, of the estimated
velocity at t; as (@; X ;) * ¢; and (&; X T;) + n;; this yields

-~ Z; PPN “ A
& = o - 3:7 (6;%; +B;9;), (east compouent)

5.6 ~ £:P:
b, = (ﬁvﬁ) R,, (north component).

31
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WARREN W, WILLMAN
3. Compute
§i+1
ey Yisy
Ziv1
such that
~ ~ (@ix¥)
Yiaq = Fcos(7h) + 5, sin (7b;)
where
by = a2 + B + 32 = |&;]

T = tl‘+1 - tl’q

This is position propagation by dead reckoning along a great-circle path. As a simplifying
approximation, one could compute instead

~

2
- T ~ - - a
fiv1 = ’i(l ) wi'wi)"'(wix.'_'i)-

4. Compute ihe new value

_ ) ~2
Gi+1 = VXj+1 ¥ Visy -

5. Compute the new local east and local north velocity coraponents as in step 2,
giving

~ ii"l -~ . A
'Eiq.l = 0; 1Y “i-+_1 (a,-x,-+1 -B,-‘Y,-+1)

~ (Vi — Fab; R
vl""l = a‘-+1 e

6. Compute the rotation matrix 6;,; such that

e i A ats

A i £ o it SRR e a

vt ———

e e — . e ———- =

e bt b MR oI kB i s e
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7. Compute a positive semidefinite approximation to Q;; denote it by

* *
qee | qeﬂ
* _t . _ 1 -
Qi - * | - ;
9en 1 Qnn

One reasonable method of doing this is described in the section ‘‘Tracking of Planar

- Motion.”

8. Compute the symmetric 4X 4 matrix Msuch that

_ \ | \ -
Mee : Mep : mep : Mep
N o om e e e -
LU [ - [
- S Mpp | My | My,
M = S b
~ ‘ (X
Symmetric ¥ \_pfe_ -Ir _pf"_
! TNy P
and
Mee = Pee * ZPeéT2 + péé"z + GooT
Mepn = Pen * (Peiy ¥ Ppe)T + péh"z + q:n‘r
Mpp = Pun + 2PaaT + PanT° + GluT
Mei = Pei + PgsT
Mey = Pei + PeiT
Mue = Pné + PenT
I_T.zm; = Pniy t PanT-
9. Compute the rotated matrices
1 ] i |
Oiv1 | O 6% 0
=|--=dee M|--=1--~] @x9)
0 : 041 0 : i+1
and
Qie1 = 6;41Q;00%, . (2x°2)

Denote their components with analogous subscripts.
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10. Compute the local east and local north components €, and ¢,, of the residual
vector

Ex
(Zis1 ~Tis1) = €y
€2

by taking dot products with the unit vectors e;,; and n;,; (not shown) used in step 2,
which gives

1 "~
€ = & Fiv1€6y = Vis16x)

and

1

~ ~ ~ ~ 2
€, = [-€,% 1% —€.¥;i4+13;41 Y €,0] )
n gi+1Re \ i+1vi+l yYi+1%i+1 T €30/4+]

11. Compute the new state covariance matrix F;,4 as

{
~ ! ] v T om) ]
Pee | Pen | Pee | Pen ec | Men
——-.-I ----- r ———l' ——————— 1~—-—- L]
A| Pen : Pun : Pne : Pni Men : Man
By S|---d--- o -~ =My —|---1---
Pee | Pné |\ Pée ipéﬁ Meé l My, , :
Y T SR ' .
I f | :
3 m m ; :
|_Pea | Pna | Pén | Phi is1 en | M | i :
3
| -1 | | 7
X Mee | Mep " Mee | Mep | Mee | Mgy
——— = =] ¢ . — e = —— .
i+l
| ! ! , s
Mep | Mpn Men | Mpn | Mpe | Mpj;

12. Compute Kalman filter correction terms § in local east and local north

coordinates:
S, ] Pee :_ Pen _1 %
| .
dn Pen | Pnn -1 | Ce 3‘
=-=|=|---r-=-| Ria|--- |
O¢ Pee : Pne €n 3
- ---be— 3

8n Pern | Pna

L. p L. | -lit]

34
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}3. Use the Kalman filter correction terms to compute the new estimates F,-,,l
and w;,, the components of which are

- 1

A~ 1 ~ ~
%+l = T [yi+16e * R, Gi+1zi+15n)] + Xje1

~ 1 ~ 1 ~ -~
Yisr T g ["inae "R, Ginzinau)] ¥ Yisl

Qi+ ~
R, 6n + Zisy

Ziv1 <

gy = 05+

1 ~ 1 e ~
Ran [yi+15fx "R, (xi+12i+155)]

edi+1

2 1 ~ 1 -~
Biv1 =6 — Raos [x¢‘+15r'z" R—e 67i+12i+15é)]

. - G;i+q
Yisr = Vi Y 3 8 .
Re

Also, it might be wise to renormalize ¥;,, so that its magnitude is R, to prevent an ac-
cumulation of roundoff errors.

14. Compute the new estimate of the driving noise matrix Q;,;, as @;4; = 0 if
i = 0, otherwise as

i
- 1 1 EE T Mee | €e€py T Mgy
Qi = Quy Y y\7 |7~~~ boommmm - -7 R

— End of Update Cycle —

Simplifying Approximations

It might be possible to reduce the computation required to implement this tracking
algorithm with little sacrifice in accuracy by adopting some aPproximations. In addition
to that mentioned in step 3 for generating ¥}, from ¥; and w;, another likely approxima-

ticn is to neglect the rotation of local east and local north between successive observations.

With this approach it is possible to omit steps 1, 2, 6, and 9 in the update cycle by the
use of M“¢1 = M4 in step 11 and Q“’l = Qi in step 14.
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Track Smoothing

The basic approach here is the same as in pages 27 to 29. The smoother is imple-

| mented as a backward recursion to compute offsets d; to the Kalman filter position esti-

mates I; and also the smoothed error covariance matnces K; corresponding to the d;. The
offsets are computed in local east and north coordinates; thus the d; are 2-vectors and the
K; are 2X 2 matrices. If smoothing is to take place 1mmed1ately a.fter time ¢y, it is as-
sumed that the Kalman filter outpuis @y, @F, f;, and B, i = 0, ..., N, are all available.
The procedure can be implemented as described below.

® Set

| ) dy =0
Ky = Py
Qy = Q.

L] ~Loop through the following steps fori =N -1, N- 2, ..., 0

1. Follow steps 1 through 5 of the filter update cycle of the preceding subsection,

except with @; replaced by @y to compute 8;,1, X;41, ¥is1> Zi+1, €; and n;.

2. Rotate the offset vector d;,; and covariance matrix K;,, to the ith local Carte-

sian coordinate frame:

a; = 051d;4y (offset 2-vector)

L = 0% 1K;410;+7 (2X2 covariance matrix).

3. Compute the local east and north components of ¥;,; — ¥;,; in the ith coordi-

nate frame:.
€ = (Fie1~Ting) v
€n = (?i+1 ~Tis)° N
4. Compute
My = B+ Q;,
where

Q = 0f11Qis10i41

T‘- = ti'l'l - t".
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5. Compute the new offset and covariance matrix: L

—=1 — ==1
K; =P + PiM,-+1(L,-“Mi+1)Mi+1&°

— End of Loop —

At this point, one could also compute the smoothed position vectors T; as

-—

n=% + [e | nj]d;,

where

[e; | n;] denotes a 3X 2 matrix.
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| Appendix A
GENERAL RECURSIVE FILTER AND SMOOTHING ALGORITHMS
Suppose that x is a state vector describing a ship’s motion in the context of Eqs. (1),
(2), and (3), and that the corresponding Kalman filter is being used to track the ship.

The conditional moments n and K can be computed recursively from the data by means
of the following equations.

Forward Equations (Kalman Filter for Egs. (1) Through (3))

.
-~

<P+ D | (A1)
. between ohservations
P=FP +PFT +Q ' - (A2)
P}y = [Py + HTRF'H]™; P(tg) = My (A3a)
‘ at
= P(t]) - H] [H;P(¢))H] + R] ™ HP(t]) observation (A3b)
{ time tl'
! 2(@) = 2¢7) + PEHIR [2; - HiZ(6])]; #(tg) = X - (A4)

For the “flat prior” case, use P"1(tg) = 0 in Eq. (A3a).

Backward Equations (Bayesian Smoother for Eqs. (1) Through (3))

=Fi +w (A5)
] Letween observations
P=FP +PFT + @ (A6)
Pt;) = [P ¢)) - HRF'H]™ (A73)
at
. = P(t]) + P(t])H [R; ~ H;P(})HT | THP(]) observation (A7b)
time ¢
2(t7) = 2(6)) - PE))HRMz; - HiZ(])] (A8)
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an(T,t) . _ 4 . )
ot =N =Fn+w+ QP [n(T,¢) - £]; 2(T, T) = £(T) (A9)
. always .
K(T.t) = [F + QP NK(T, t) + K(T, t)[FF +P7Q] - Q; F always
K(T, T) = P(T) . et e T (A10)

The Kalman filter statistics x(¢) and P(t) are computed using only the forward equations
from time ¢, to time t. The moments n{7, ¢) and K(T, t), for T > t, are computed by
first obtaining #(T) and P(T) using the forward equations from time ¢, to time T. Then
these values are used as boundary conditions at time T for the backward equations, which
are then used recursively from time 7T to time t to obtain (7, t) and K(T, ).

These results are developed in greater detul in Bryson and Ho.*

K RTIT A Dl

*A.E. Bryson and Y.C. Ho, Applied Optimal Control, Blaisdell, Walthara, Mass., 1968,
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| Appendix B
*“INCLUSION OF OCCASIONAL VELOCITY OBSERVATIONS

— o

In the context of the planar motion of the section “Tracking of Planar Motion,”
suppose that a noisy, independent measurement of the ship's velocity is obtained at ob-
servation time ¢; in addition to the position measurement z;. We assume that this velocity
measurement can be adequately described as

$i = 8(t) + o; . (B1) ?
where

$i

"

measured .velocity (2-vector) | *
actual instantaneous velocity in x-y coordinates (2-vector) 5
zero-mean, Bivariate Normal, random variable with covariance matrix Z;.

]

L]

g;

Unfortunately, the ship motion mode] (pages 4 and 5) is an inadequate approximation to

the actual motion for the purpose of dealing with such velocity observations because an _
instantaneous velocity cannot be defined for the Brownian motion component. The j
model can be refined for this purpose, however, by specifying a probability distribution j
for the difference between the average velocity and the observed, instantaneous velocity.

One convenient way of doing this is to assume that these differences are statistically in-

' dependent for different observation times and distributed with a zero-mean Bjvariate

; Normal distribution with covariance matrix D; at observation time {;. As a default proce-

; dure to avoid specifying D; externally, it might be reasonable to use

; Qxx | 9xy
Di:t.—"t ———b -1,
i 0 |
9xy | 9yy

where ¢.., qyy, and g,, are as defined in Eqgs. (30) through (34). This procedure is based
on matching the variances of the observed fluctuations in position.

i
i
3

o i b s >

A

With this refinement, it follows from Eqgs. (4) and (Bl1) that the velocity measurement
§; can be expressed as
u u
§,~=[——}+(s(t,-)—|:--]+a,-), (B2)
v v
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the latter term in parentheses being a Bivariate Normal random variable with mean zero
and covariance matrix (Z; + D;). Therefore, the compasite observation vector

't
[f-']
can be regarded as a noisy observation of the state vector

:r_xﬁ

y

u

. U

at time ¢; in the context of Appendix A. The (4 X 4) covariance matrix of the observa-
tion noise 7; in thi¥ context is

‘ | R, ] 0
| SR et Sttt '
T R TS

Specializing the results of Appendix A to this particular case shows that the track

generation procedure (pages 6 to 14) applies here also, except that Egs. (22) through (24)‘

are replaced respectively by the following three equations whenever a velocity measure-
meat §;,; is obtained at time £;4;:

fi*l £,~ &;- DPxx : Dxy -1 2, (i+1) - .‘E" - Tﬁi
il Bl Bl AL Rl B '——_’;—_"—“ R TSt TT T T o
Yier y; Vi p‘r v Pyy o1 zy(l +1) - yi —
Pxy : Pxy ] 1 i@;
tlmmmmm== - Ciea ¥ D) | G - - (B3)
Pyy ! ‘py"_li’l Ui

T

i, i

Sl detiadint




S v

s it

8;4q ﬁi:| Pxu | Pyu o |E¥Y) - & - T
ek B B B B B e e s
b1 b; Pxy | Py ie1 ! zy(i +1) - ¥; = 79
] Y
Puy | Pw 4 u;
“'[“"‘t"""] (Zis1 +Dj4y) (fi-u = [:’:"]) (B4)
Py | Pw Y;

i+l

Poy =M-M[M+|-—c-b-emmeem M. (B5)
L 0 | Zj4 +Din

The M matrix components are as defined in Eqs. (12) through (21). Since the-track
propagation steps are unchanged, there are no additional modifications for velocity ob-
servations in the spherical track propagation algorithms because the track updating steps
are performed in Cariesian coordinates there also.

The results of Appendix A can also be specialized to this case for track smoothing.
It would be necessary to retain all four components of the state vector for this purpose
because velocity observations must be taken directly into account. This would be a dras-
tic departure from the other smoothing algorithms developed in this report, which are
based on a two-component, position-only, state vector approximation. Therefore the de-
tails of this four-dimensional smoother are not developed here. A two-dimensional
smoother can always be used, anyway, by ignoring the velocity measurements.

42

NI




|

™
N

Appendix C
DEVELOPMENT OF CONSTRAINT ON MANEUVERING MATRIX ESTIMATE

A procedure is described in Eqgs. (30) through (34) for modifying the estimates
dxx (1), dyy (i), and Gy, (i) of the maneuvering matrix components to ensure that the re-
sulting estimates form a positive semidefinite matrix whose principal axes are aligned with
the current estimate

of the average velocity vector. The justification for this particular procedure is discussed
below.

Suppose that the estimated average velocity vector is as shown in Fig. C1, where the

i and c axes are in-track and cross-track coordinates. From this figure, the formulas for
rotation of coordinates give

x cosd | ~sin b i
S R DR IO [ P
y sin@ ! cos@ c

from which
+2
u.
cos2f = ——— (C1)
ui +y
, of
sin2f = ———0. (C2)
up + vy
and
. _
&in 6 cosf = ——— - (C3)
u; + Ui

For a maneuvering noise covariance matrix which has the diagonal form
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in the i, ¢ coordinate system, the corresponding covariance matrix in x, y coordinates is,
by standard formulas for linear coordinate transformations,

g;cos2 0 + q.sin26 |
————————————— Fm—————————==. (C5)
|

(gi—qc)sin6cos ! q;8in26 + q, cos2 6
; If this is to be equal to an observed symmetric matrix
:‘ A 1 -
2 [:qxx | Qxy]
3 —_—~=p===1>
. . | A
ey | 9yy
then
} ’ ) 3 éxy .
% = sOsmb * e
: : Thezefore,
; ‘ 44
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g =G, -8 . _ . gm0, _ 9o
i~ Ay " cog9 Txy T xx 0 9% 7 Zin0 cos 0
and
- sinf . - sin8 . éxy
- + = -
Qe = xx ¥ 5550 92y = 99y T o560 Y Y dinbcos’

from which we get

- . -
1. u Qxy
U= 9= ¥ Uy Y G st (C6)
and
_ 1. - éxy ]
% =2 9= " 9 " Gngcese]” ©n

For arbitrary §,,, d.y, and § ys Eqs. (C1) through (C3) can be used in modifying Eqgs.
(C6) and (C7) as follows so that the diagonal matrix (C4) is always positive semidefinite:

1

(]

q; (E+2)

(S

qe (’c' - A) ’
where

£ = max {0: (&xx +éyy)} (Cs)

A=< - it 2L 1« ¢ (C9)

~ u + v. L3
kqu o otherwise .
Using Eqgs. (C1) through (C3) in covariance matrix (C5) for this modified matrix in x, y

coordinates gives
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q; = E y ‘i - "_"‘l.z k
y 2 ‘2 - 4
‘ u; Uiz

where £ and A are defined by Egs. (C8) and (C9).
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